LINUX.ORG.RU

История изменений

Исправление quasimoto, (текущая версия) :

Держи ссылку — http://en.wikipedia.org/wiki/State_transition_system

As a mathematical object, an unlabeled state transition system is identical with an (unindexed) abstract rewriting system. If we consider the rewriting relation as an indexed set of relations, as some authors do, then a labeled state transition system is equivalent to an abstract rewriting system with the indices being the labels. The focus of the study and the terminology are different however. In a state transition system one is interested in interpreting the labels as actions, whereas in an abstract rewriting system the focus is on how objects may be transformed (rewritten) into others.

       | physics            | abstract machines    | term rewriting systems
-------+--------------------+----------------------+-------------------------------------
*      | state space        | set of states        | set of terms (language)
* -> * | evolution operator | translation function | reduction relation and its closures

Но не нужно сваливать в кучу — я кинул две ссылки на книжки про третий вариант (нетипизированный и в сторону логики и оснований) и одну про второй с третьим (там есть про построение http://en.wikipedia.org/wiki/SECD_machine, graph reduction, B-machines, G-machines для LC — глобальные состояния, все дела).

Исправление quasimoto, :

Держи ссылку — http://en.wikipedia.org/wiki/State_transition_system

As a mathematical object, an unlabeled state transition system is identical with an (unindexed) abstract rewriting system. If we consider the rewriting relation as an indexed set of relations, as some authors do, then a labeled state transition system is equivalent to an abstract rewriting system with the indices being the labels. The focus of the study and the terminology are different however. In a state transition system one is interested in interpreting the labels as actions, whereas in an abstract rewriting system the focus is on how objects may be transformed (rewritten) into others.

       | physics            | abstract machines    | term rewriting systems
-------+--------------------+----------------------+-------------------------------------
*      | state space        | set of states        | set of terms (language)
* -> * | evolution operator | translation function | reduction relation and its closures

Но не нужно сваливать в кучу — я кинул две ссылки на книжки про третий вариант (нетипизированный и типизированный в сторону логики и оснований) и одну про второй с третьим (там есть про построение http://en.wikipedia.org/wiki/SECD_machine, graph reduction, B-machines, G-machines для LC — глобальные состояния, все дела).

Исходная версия quasimoto, :

Держи ссылку — http://en.wikipedia.org/wiki/State_transition_system

As a mathematical object, an unlabeled state transition system is identical with an (unindexed) abstract rewriting system. If we consider the rewriting relation as an indexed set of relations, as some authors do, then a labeled state transition system is equivalent to an abstract rewriting system with the indices being the labels. The focus of the study and the terminology are different however. In a state transition system one is interested in interpreting the labels as actions, whereas in an abstract rewriting system the focus is on how objects may be transformed (rewritten) into others.

       | physics            | abstract machines    | term rewriting systems
-------+--------------------+----------------------+-------------------------------------
*      | state space        | set of states        | set of terms (language)
* -> * | evolution operator | translation function | reduction relation and its closures

Но не нужно сваливать в кучу — я кинул две ссылки на книжки про третий вариант (нетипизированный и в сторону логики и оснований) и одну про второй с третьим (там есть про построение http://en.wikipedia.org/wiki/SECD_machine, graph reduction, B-machines, G-machines для LC — глобальные состояния, все дела).