LINUX.ORG.RU

История изменений

Исправление psv1967, (текущая версия) :

Чего попросили, того и подогнала :)


> read.table("dat.txt", header=T)
      C   IC
1 1e+00 0.60
2 1e-01 0.30
3 1e-02 0.20
4 1e-03 0.03
5 1e-04 0.06
> data<-read.table("dat.txt", header=T)
> library(MASS)

> glm(IC~C,data=data,family=quasibinomial(link=probit))

Call:  glm(formula = IC ~ C, family = quasibinomial(link = probit), 
    data = data)

Coefficients:
(Intercept)            C  
     -1.108        1.401  

Degrees of Freedom: 4 Total (i.e. Null);  3 Residual
Null Deviance:	    1.196 
Residual Deviance: 0.3282 	AIC: NA



> plot(seq(from=0,to=1,length.out=25),  predict(glm(IC~C,data=data,family=quasibinomial(link=probit)), list(C=seq(from=0,to=1,length.out=25)),  type = "response"))

> points(seq(from=0,to=1,length.out=25),  predict(glm(IC~C,data=data,family=quasibinomial(link=probit)), list(C=seq(from=0,to=1,length.out=25)),  type = "response"), col="red")


Исправление psv1967, :

Чего попросили, того и подогнала :)

[quote] read.table("dat.txt")[br][/quote]      V1   V2
1      C   IC
2      1  0.6
3    0.1  0.3
4   0.01  0.2
5  0.001 0.03
6 0.0001 0.06
[quote] data<-read.table("dat.txt", header=T)[br] library(MASS)[br] glm(IC~C,data=data,family=quasibinomial(link=probit))[br][/quote]Call:  glm(formula = IC ~ C, family = quasibinomial(link = probit), 
    data = data)

Coefficients:
(Intercept)            C  
     -1.108        1.401  

Degrees of Freedom: 4 Total (i.e. Null);  3 Residual
Null Deviance:	    1.196 
Residual Deviance: 0.3282 	AIC: NA

[quote] predict(glm(IC~C,data=data,family=quasibinomial(link=probit)))[br][/quote]         1          2          3          4          5 
 0.2935722 -0.9676437 -1.0937653 -1.1063774 -1.1076387 
[quote] predict(glm(IC~C,data=data,family=quasibinomial(link=probit)), list(C=2))[br][/quote]       1 
1.694923 
[quote] predict(glm(IC~C,data=data,family=quasibinomial(link=probit)), list(C=3))[br][/quote]       1 
3.096274 
[quote] predict(glm(IC~C,data=data,family=quasibinomial(link=probit)), list(C=1))[br][/quote]        1 
0.2935722 

[quote] predict(glm(IC~C,data=data,family=quasibinomial(link=probit)), type = "response", list(C=1))[br][/quote]        1 
0.6154576 
[quote] predict(glm(IC~C,data=data,family=quasibinomial(link=probit)), type = "response", list(C=0.5))[br][/quote]        1 
0.3419661 

[quote] points(seq(from=0,to=1,length.out=25),  predict(glm(IC~C,data=data,family=quasibinomial(link=probit)), list(C=seq(from=0,to=1,length.out=25)),  type = "response"), col="red")[br][/quote]

Исходная версия psv1967, :

Чего попросили, того и подогнала :)

[data]

read.table(«dat.txt»)

V1 V2 1 C IC 2 1 0.6 3 0.1 0.3 4 0.01 0.2 5 0.001 0.03 6 0.0001 0.06

data<-read.table(«dat.txt», header=T)
library(MASS)
glm(IC~C,data=data,family=quasibinomial(link=probit))

Call: glm(formula = IC ~ C, family = quasibinomial(link = probit), data = data)

Coefficients: (Intercept) C -1.108 1.401

Degrees of Freedom: 4 Total (i.e. Null); 3 Residual Null Deviance: 1.196 Residual Deviance: 0.3282 AIC: NA

predict(glm(IC~C,data=data,family=quasibinomial(link=probit)))

1 2 3 4 5 0.2935722 -0.9676437 -1.0937653 -1.1063774 -1.1076387

predict(glm(IC~C,data=data,family=quasibinomial(link=probit)), list(C=2))

1 1.694923

predict(glm(IC~C,data=data,family=quasibinomial(link=probit)), list(C=3))

1 3.096274

predict(glm(IC~C,data=data,family=quasibinomial(link=probit)), list(C=1))

1 0.2935722

predict(glm(IC~C,data=data,family=quasibinomial(link=probit)), type = «response», list(C=1))

1 0.6154576

predict(glm(IC~C,data=data,family=quasibinomial(link=probit)), type = «response», list(C=0.5))

1 0.3419661

points(seq(from=0,to=1,length.out=25), predict(glm(IC~C,data=data,family=quasibinomial(link=probit)), list(C=seq(from=0,to=1,length.out=25)), type = «response»), col=«red»)

[/data]