История изменений
Исправление zendrz, (текущая версия) :
(с) http://imperium.lenin.ru/~verbit/MATH/programma.html
Список полезных книжек по математике
Первый курс
Анализ" Лорана Шварца, "Анализ" Зорича,
"Задачи и теоремы из функ. анализа" Кириллова-Гвишиани
Дифференциальная топология (Милнор-Уоллес),
Комплексный анализ (Анри Картан), Комплексный анализ (Шабат)
Второй курс
Группы и алгебры Ли (Серр)
Алгебраическая топология (Фукс-Фоменко),
"Векторные расслоения и их применения" (Мищенко)
"Характеристические Классы" (Милнор и Сташеф)
"Теория Морса" (Милнор),
"Эйнштейновы Многообразия" (Артур Бессе),
Коммутативная алгебра (Атья-Макдональд),
Введение в алгебраическую геометрию (Мамфорд)
Алгебраическая геометрия (Гриффитс и Харрис),
Алгебраическая геометрия (Хартсхорн)
Алгебраическая геометрия (Шафаревич)
Алгебраическая теория чисел (ред. Касселс и Фрелих)
Теория чисел (Боревич-Шафаревич)
Когомологии Галуа (Серр)
"Инварианты классических групп" (Герман Вейль)
Третий курс
Бесконечнократные пространства петель (Адамс)
К-теория (Атья)
Алгебраическая топология (Свитцер)
Анализ (Р. Уэллс)
Формула индекса (Атья-Ботт-Патоди, сборник Математика)
Гомологическая Алгебра (Гельфанд-Манин)
Когомологии групп (Браун, что ли)
Когомологии бесконечномерных алгебр Ли (Гельфанд-Фукс)
Кэлеровы многообразия (Андрэ Вейль)
Квазиконформные отображения (Альфорс)
Четвертый курс
Геометрическая топология (Сулливан)
Этальные когомологии (Милн)
Алгебраическая геометрия - обзор Данилова (Алгебраическая Геометрия 2, ВИНИТИ)
Группы Шевалле (Стейнберг)
Алгебраическая К-теория (Милнор)
Обзор Суслина по алгебраической К-теории из 25-го тома ВИНИТИ
Многомерный комплексный анализ (Гото-Гроссханс)
То же по книжке Демайи (перевод готовится)
Пятый курс
Громов "Гиперболические группы"
Громов "Знак и геометрический смысл кривизны"
Думаю, что из категории «Первый курс» вполне можно попытаться что-то почитать
Исходная версия zendrz, :
(с) http://imperium.lenin.ru/~verbit/MATH/programma.html
Список полезных книжек по математике
Первый курс
Анализ" Лорана Шварца, "Анализ" Зорича,
"Задачи и теоремы из функ. анализа" Кириллова-Гвишиани
Дифференциальная топология (Милнор-Уоллес),
Комплексный анализ (Анри Картан), Комплексный анализ (Шабат)
Второй курс
Группы и алгебры Ли (Серр)
Алгебраическая топология (Фукс-Фоменко),
"Векторные расслоения и их применения" (Мищенко)
"Характеристические Классы" (Милнор и Сташеф)
"Теория Морса" (Милнор),
"Эйнштейновы Многообразия" (Артур Бессе),
Коммутативная алгебра (Атья-Макдональд),
Введение в алгебраическую геометрию (Мамфорд)
Алгебраическая геометрия (Гриффитс и Харрис),
Алгебраическая геометрия (Хартсхорн)
Алгебраическая геометрия (Шафаревич)
Алгебраическая теория чисел (ред. Касселс и Фрелих)
Теория чисел (Боревич-Шафаревич)
Когомологии Галуа (Серр)
"Инварианты классических групп" (Герман Вейль)
Третий курс
Бесконечнократные пространства петель (Адамс)
К-теория (Атья)
Алгебраическая топология (Свитцер)
Анализ (Р. Уэллс)
Формула индекса (Атья-Ботт-Патоди, сборник Математика)
Гомологическая Алгебра (Гельфанд-Манин)
Когомологии групп (Браун, что ли)
Когомологии бесконечномерных алгебр Ли (Гельфанд-Фукс)
Кэлеровы многообразия (Андрэ Вейль)
Квазиконформные отображения (Альфорс)
Четвертый курс
Геометрическая топология (Сулливан)
Этальные когомологии (Милн)
Алгебраическая геометрия - обзор Данилова (Алгебраическая Геометрия 2, ВИНИТИ)
Группы Шевалле (Стейнберг)
Алгебраическая К-теория (Милнор)
Обзор Суслина по алгебраической К-теории из 25-го тома ВИНИТИ
Многомерный комплексный анализ (Гото-Гроссханс)
То же по книжке Демайи (перевод готовится)
Пятый курс
Громов "Гиперболические группы"
Громов "Знак и геометрический смысл кривизны"
Думаю, что из категории «Первый курс» вполне можно попытаться почитать