История изменений
Исправление sena, (текущая версия) :
Вот меня, например, поразило множество Мандельброта. Разве это не удивительно? Из простейшей формулы z_{{n+1}}={z_{n}}^{2}+c порождается бесконечно сложная картинка:
https://www.youtube.com/watch?v=pCpLWbHVNhk
А это комплексные числа (которые удивительным образом связаны с тригонометрией => косинусы-синусы)
Исправление sena, :
Вот меня, например, поразило множество Мандельброта. Разве это не удивительно? Из простейшей формулы z_{{n+1}}={z_{n}}^{2}+c
https://www.youtube.com/watch?v=pCpLWbHVNhk
А это комплексные числа (которые удивительным образом связаны с тригонометрией => косинусы-синусы)
Исправление sena, :
Вот меня, например, поразило множество Мандельброта. Разве это не удивительно? Из простейшей формулы z_{{n+1}}={z_{n}}^{2}+c
https://www.youtube.com/watch?v=pCpLWbHVNhk
А это комплексные числа (которые удивительным образом связаны с тригонометрией = косинусы-синусы)
Исправление sena, :
Вот меня, например, поразило множество Мандельброта. Разве это не удивительно? Из простейшей формулы z_{{n+1}}={z_{n}}^{2}+c
https://www.youtube.com/watch?v=pCpLWbHVNhk
А это комплексные числа (которые удивительным образом связаны с тригонометрией)
Исправление sena, :
Вот меня, например, поразило множество Мальдерброта. Разве это не удивительно? Из простейшей формулы z_{{n+1}}={z_{n}}^{2}+c
https://www.youtube.com/watch?v=pCpLWbHVNhk
А это комплексные числа (которые удивительным образом связаны с тригонометрией)
Исходная версия sena, :
Вот меня, например, поразило множество Мальдерброта. Разве это не удивительно?
https://www.youtube.com/watch?v=pCpLWbHVNhk
А это комплексные числа (которые удивительным образом связаны с тригонометрией)