К сожаленью лолксик не помог, поэтому спрошу здесь:
Возниклa необходимость построить график синуса частотой 500 Герц. Исходя из предположения, что f(x)=sin(ωt) = sin(2π*500*x), ввожу в гнуплоте: plot sin(2*pi*500*x). Результат меня удивил: http://pic.ipicture.ru/uploads/090331/SyaAFnZpmc.png
Собственно, когда я заключил х в отрезок [0:0.002](т.e. ввёл в гнуплот "plot [0:0.002] sin(2*pi*500*x)"), то получил то, что хотел в начале, то бишь одно колебание за 1/500 секунд: http://pic.ipicture.ru/uploads/090331/23U15O3ALF.png
Почему так? Я имею ввиду, что на первом графике неправильно отскалирована х-ось (да и ещё для x>=0 график убывает, а не возрастает, как у канонiчной синусоиды). Или ещё, почему графики "plot sin(2*pi*5*x), sin(2*pi*500*x)" совпадают? Неужели гнуплот рисует графики такого рода по точкам?
Ладно, для тривиальных функций я могу заранее предположить общий вид, а что если функция дробно-квадратично-логарифмическая?