DataOps (DATA Operations, датаопс) — это концепция и набор практик непрерывной интеграции данных между процессами, командами и системами для повышения эффективности корпоративного управления или отраслевого взаимодействия за счет распределенного сбора, централизованной аналитики и гибкой политики доступа к информации с учетом ее конфиденциальности, ограничений на использование и соблюдения целостности.
В связи с популяризацией методов Machine Learning и ростом их практических внедрений, у бизнеса появилась потребность в организации непрерывного сотрудничества и взаимодействия между всеми участниками процессов работы с моделями машинного обучения от бизнеса до инженеров и разработчиков Big Data, включая Data Scientist’ов и ML-специалистов. Понятие MLOps еще достаточно молодое, однако с каждым днем оно становится все более востребованным.
AIOps состоит из двух основных компонентов: «большие данные» и «машинное обучение». Таким образом, ИТ специалисты должны отойти от логгирования и отслеживания множества отдельных событий (siloed IT), которые активно используются сейчас, а положиться на машинное обучение и анализ данных, которые приходят от систем мониторинга, журналов нарядов на работы и т.д. Желаемый результат - непрерывный анализ, который даст ответы и позволит реализовать непрерывные улучшения и исправления в работе ИТ-инфраструктуры. Платформа AIOps связывает три дисциплины – управление услугами, управление производительностью и автоматизацию - для достижения желаемого результата и может рассматриваться как непрерывное совершенствование, интеграция и внедрение (CI/CD) основных ИТ функций.